EXERCISES FUCHSIAN DIFFERENTIAL EQUATIONS FALL 2022

Herwig HAUSER

9 Try to solve the following equations

$$
\begin{aligned}
& x^{3} y^{\prime \prime}+y=0, \\
& x^{2} y^{\prime \prime}+y=0, \\
& x y^{\prime \prime}+y=0, \\
& y^{\prime \prime}+y=0, \\
& y^{\prime \prime}+x y=0 .
\end{aligned}
$$

10 Find an Euler differential equation $E y=0$ which has at 0 local exponents 1,2 , and 3 of multiplicities 1,1 , and 2 respectively. Then solve it.

11 Let the derivation $\underline{\partial}$ on $K((x))[z]$ be defined by $\underline{\partial} x=1$ and $\underline{\partial} z=\frac{1}{x}$, with $K((x))$ the field of formal Laurent series. Prove that

$$
\underline{\partial}^{j}\left(x^{t} z^{k}\right)=\left[t^{\underline{j}} z^{j}+\left(t^{\underline{j}}\right)^{\prime} k z^{j-1}+\ldots+\frac{1}{j!}\left(t^{\underline{j}}\right)^{(j)} k^{\underline{j}}\right] \cdot x^{t-j} z^{k-j} .
$$

12 Determine all singularities (in $\mathbb{P}_{\mathbb{C}}^{1}$) of the hypergeometric equation

$$
x(x-1) y^{\prime \prime}++[c-(a+b+1) x] y^{\prime}-a b y=0,
$$

for $a, b, c \in \mathbb{Q}$, together with its local exponents.

